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The behavior of the sequence Xn+l = xi3N - x"2)/2N is studied for N > 0 and
varying real Xu' When 0 < Xu < (3N)1/ 2 the sequence converges quadratically
to }{l/2. When xu> (5N)1 /2 the sequence oscillates infinitely. There is an increasing
sequence f3r with fJ-l = (3N)1 /2 which converges to (5N)l/2 and is such that when
fJr < Xo < f3r+l the sequence {xn} converges to (-I)'Nl /2. For Xu = 0, 13-1,
fJo ,••• the sequence converges to O. For Xu = (5N)1/2 the sequence oscillates:
X n = (-I)"(5N)l/2. The behavior for negative Xo is obtained by symmetry.

I. INTRODUCTION

The recurrence relation

(1)

which converges quadratically to NIJ2-we shall assume N> O-was
popular in the days of computers without division instructions since it did
not involve division by a variable quantity as does the Newton-Raphson
relation

(2)

although (I) is slightly less rapidly convergent than (2). In fact if
€n = Xn - JVlJ2 we have
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while if 7Jn = Yn - }{1/2 we have

It is well known that the behavior of the iterates of polynomial or rational
functions can be quite complicated. (See, e.g., Chaundy and Phillips [2] for
the behavior in the case Xn+l = aXn

2 + bXn + c and, for more general
results, De Bruijn [1] and Montel [4]. Stein and Ulam [6] and Metropolis
et af. [3] discuss higher dimensional nonlinear transformations, partly
experimentally.)

The behavior in the case of (2) is simple: If 0 < Xo < }{1/2 then Xl > NI/2

and {xn}~ decreases to NI/2. If Xo = NI/2 then Xn = NI/2. If NI/2 < Xo

then {xn}~ decreases to NI/2. If Xo is negative we get convergence to _NI/2,

g being odd.
The behavior in the case of (1), summarized in the abstract, is moderately

complicated. In our discussion of (1), since f(x) is odd, we may restrict our
attention to the case when Xo is positive.

2. THE CASE WHEN 0 ~ Xo ~ (3N)I/2

If Xo = 0 we have Xn = 0 and Xn --+ O. If Xo = (3N)I/2 then Xl = X2 =
... = 0 and we have Xn --+ O. If Xo = NI/2 then Xn = NI/2. We need to deal
with 0 < Xo < (3N)l/2 only.

Note that if the sequence X n --+ I then we must have

I = 1(3N - 12)/2N

so that

We have

1=0 or (3)

Xn+l - NI/2 = [xn(3N - xn
2) - 2N3/2]/2N

= -(xn - NI/2)2(Xn + 2NI/2)/2N. (4)

This shows that convergence will be quadratic. Moreover, if Xn is positive,
Xn+l - NI/2 is negative, i.e., Xn+l < NI/2. Again

(5)

which is positive if 0 < Xn < NI/2, negative if Xn > NI/2. If 0 < Xo < (3N)I/2

then Xl > 0 from (1) and from (4) we conclude that Xl < NI/2. It follows
from (5) that Xl < X2 < .... Since we have already noted that Xn+l < NI/2

it follows that Xn --+ NI/2.
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These cases are illustrated in Fig. 1. If Xo = A, then Xl = n, X2 = C
while if Xo = D, then Xl = n, X2 = c.

FIGURE 1

3. THE CASE WHEN Y = (5N)I/2 ~ Xo

From (1), if X n = ±Y, then Xn+l = =fy. Hence, when Xo = y, we have
Xn = (_l)ny and the sequence oscillates finitely.

Take Xo > y. Then from (1)

(7)

so that Xl < -Yo Also, since Xl is negative and X l
2 > 5N,

Subtracting (7) from (8) we find

X 2 - X o > o.

(8)

(9)

Hence, the subsequence {x2n} is increasing; similarly, the subsequence {X2n- l }

is decreasing. We shall show that neither can have a finite limit, and so the
sequence oscillates infinitely.
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From (1) we find

HWANG AND TODD

If the subsequence {x2n} has a finite limit [then we must have

16N4[ = [(3N - [2)(12N3 -[2(9N2 - 6N[2 + [4»,

which gives

[9 _ 9NP + 27N2[5 - 39N3[3 + 20N4[ = o.

The same is true for the subsequence {X2n-l}.
This I quation has five real roots

[= 0, [= ±(5N)1/2 (11)

"nrl f ...",r N\1 Ilplex ones which are the roots of

[4 _ 3N[2 + 4N2 = O.

Since, from (9), the absolute values of all the X n exceed Xo > y, none
of the limits in (11) is possible. Hence, the sequence oscillates infinitely.

4. THE CASE WHEN (3N)1/2 < Xo < (5N)1/2

This is where the complications are. We shall show that there is an increas
ing sequence of numbers fJr , r = -1, 0, 1,... satisfying (3N)1/2 :( fJr < (5N)lf2
and such that fJr ~ (5N)lf2 which have the following properties:

if Xo = fJr then Xn~ 0 and in fact Xr+2 = Xr+3 = ... = O. (12)

if fJr < Xo < fJr+l then Xn~ (-=1)' Nlf2. (13)

We begin by discussing the equation

hex) = 3x3 - 3x - 20 = 0,

which we can also write as

x(3x2 - 5) + 2(x - 0) = 0,

(14)

(15)
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when 1 ~ 8 < (5/3)1/2 ~ 1.2910. The graph of hex) has the following form:

2

I

2(..!5n -8)

-4

FIGURE 2

It is clear from the graph that for any such 8 the equation (14) has exactly
one real root x(8) which satisfies 8 < x(8) < (5/3)1/2.

We define a sequence IXn , n = -1,0,1,..., as follows: IX-I = 1 and for
n = -1,0, 1,2,... , an+! is the unique real root of

3x3 - 3x - 2an = O. (16)

Clearly an is an increasing sequence bounded above by (5/3)1/2. Its limit I,
therefore, satisfies

313 - 31 - 21 = 0

and is, therefore, (5/3)1/2. Convergence is ultimately geometric with a common
ratio of 1/6 for we have

We can find the early a's by use of a computer, or from the tables of
Salzer et al. [5]:

IX_I = I, ao = 1.2600, IXl = 1.2826,

lim tXn = 1.2910.

tX2 = 1.2896,...
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We now define
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n = -1,0,1,....

This means that Eq. (16), which defines an+l ,

(17)

can be rewritten as

(18)

i.e.,

(19)

We shall establish the results (12) and (13) for r = -1, 0, 1,... by induc
tion; however, reference to the diagrams will be helpful. For instance, if
/30 < Xo = E < /31' then -flo < Xl = f(xo) = F < -fll and 0< X2 =
f(xl ) = G < fl-l .

(a) If Xo = fl-l = (3N)1/2, then, as already noted in Section 2, we
have Xl = X2 = ... = 0. Assume that (12) holds. Take Xo = flr+l' Then
Xl = f(xo) = f(flr+l) = -flr by (19). The induction hypothesis applies and
gives X r+3 = X r+4 = ... = o.

(b) If fl-l < Xo < flo, then °> Xl > f(flo) = -fl-l' Hence, since
f(x) is odd, we have from Section 2 that Xn -+ _Nl/2. Now assume (13)
holds. Take Xo such that flr+l < Xo < flr+2 . Then

i.e., by (19),

or

The induction hypothesis applied to Xl gives the limit (-1YNl/2 and the
fact thatfis odd shows that for -Xl the limit is

(-1) x (-IY Nl/2 = (-IY+l Nl/2

as required.

5. ANOTHER RECURRENCE RELATION

The behavior of the recurrence relation

(20)
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which also converges quadratically to Nl/2 can be discussed similarly, or it
can be read off from our results by observing that putting Xn = N/Yn in (1)
gives (20).

6. THE ORIGIN OF THE RELATIONS

All three relations are obtainable from Newton's formula,

for suitable f Specifically:

f(x) = I - Nx-2

f(x) = N - x 2

f(x) = x3 - Nx

gives (1),

gives (2),

gives (20).

7. OPTIMAL STARTING ApPROXIMATIONS

There has recently been considerable activity in the discussion of optimal
starting values for square root algorithms. In the present context this means
determining a polynomial SeN) of assigned degree such that if we take
Xo = SeN) then the algorithm for Nl/2 is optimal in an appropriate sense.
In particular Wilson [7] discusses this problem for the algorithm

(I ')

which converges to N-l/2, from which Nl/2 can be obtained with one multi
plication. Wilson notes that the optimal polynomials for (1) are got by
reversing those he obtained for (1'). Wilson does not discuss the regions of
convergence.
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