A Recurrence Relation for the Square Root

W. G. Hwang
Center for Applied Mathematics, Cornell University, Ithaca, New York 14850

AND

John TodD*

Department of Mathematics, California Institute of Technology, Pasadena, California 91109
Received April 19, 1971

The behavior of the sequence $x_{n+1}=x_{n}\left(3 N-x_{n}^{2}\right) / 2 N$ is studied for $N>0$ and varying real x_{0}. When $0<x_{0}<(3 N)^{1 / 2}$ the sequence converges quadratically to $N^{1 / 2}$. When $x_{0}>(5 N)^{1 / 2}$ the sequence oscillates infinitely. There is an increasing sequence β_{r} with $\beta_{-1}=(3 N)^{1 / 2}$ which converges to $(5 N)^{1 / 2}$ and is such that when $\beta_{r}<x_{0}<\beta_{r+1}$ the sequence $\left\{x_{n}\right\}$ converges to $(-1)^{r} N^{1 / 2}$. For $x_{0}=0, \beta_{-1}$, β_{0}, \ldots the sequence converges to 0 . For $x_{0}=(5 N)^{1 / 2}$ the sequence oscillates: $x_{n}=(-1)^{n}(5 N)^{1 / 2}$. The behavior for negative x_{0} is obtained by symmetry.

1. Introduction

The recurrence relation

$$
\begin{equation*}
x_{n+1} \equiv f\left(x_{n}\right)=x_{n}\left(3 N-x_{n}^{2}\right) / 2 N \tag{1}
\end{equation*}
$$

which converges quadratically to $N^{1 / 2}$-we shall assume $N>0$-was popular in the days of computers without division instructions since it did not involve division by a variable quantity as does the Newton-Raphson relation

$$
\begin{equation*}
y_{n+1} \equiv g\left(y_{n}\right)=\left(y_{n}+\left(N / y_{n}\right)\right) / 2, \tag{2}
\end{equation*}
$$

although (1) is slightly less rapidly convergent than (2). In fact if $\epsilon_{n}=x_{n}-N^{1 / 2}$ we have

$$
\epsilon_{n+1}=-\epsilon_{n}^{2}\left(x_{n}+2 N^{1 / 2}\right) / 2 N \sim-\epsilon_{n}^{2}\left(3 /\left(2 N^{1 / 2}\right)\right),
$$

[^0]while if $\eta_{n}=y_{n}-N^{1 / 2}$ we have
$$
\eta_{n+1}=\eta_{n}^{2} /\left(2 y_{n}\right) \sim \eta_{n}^{2}\left(1 /\left(2 N^{1 / 2}\right)\right) .
$$

It is well known that the behavior of the iterates of polynomial or rational functions can be quite complicated. (See, e.g., Chaundy and Phillips [2] for the behavior in the case $x_{n+1}=a x_{n}{ }^{2}+b x_{n}+c$ and, for more general results, De Bruijn [1] and Montel [4]. Stein and Ulam [6] and Metropolis et al. [3] discuss higher dimensional nonlinear transformations, partly experimentally.)

The behavior in the case of (2) is simple: If $0<x_{0}<N^{1 / 2}$ then $x_{1}>N^{1 / 2}$ and $\left\{x_{n}\right\}_{1}^{\infty}$ decreases to $N^{1 / 2}$. If $x_{0}=N^{1 / 2}$ then $x_{n} \equiv N^{1 / 2}$. If $N^{1 / 2}<x_{0}$ then $\left\{x_{n}\right\}_{0}^{\infty}$ decreases to $N^{1 / 2}$. If x_{0} is negative we get convergence to $-N^{1 / 2}$, g being odd.

The behavior in the case of (1), summarized in the abstract, is moderately complicated. In our discussion of (1), since $f(x)$ is odd, we may restrict our attention to the case when x_{0} is positive.

2. The Case When $0 \leqslant x_{0} \leqslant(3 N)^{1 / 2}$

If $x_{0}=0$ we have $x_{n} \equiv 0$ and $x_{n} \rightarrow 0$. If $x_{0}=(3 N)^{1 / 2}$ then $x_{1}=x_{2}=$ $\cdots=0$ and we have $x_{n} \rightarrow 0$. If $x_{0}=N^{1 / 2}$ then $x_{n} \equiv N^{1 / 2}$. We need to deal with $0<x_{0}<(3 N)^{1 / 2}$ only.

Note that if the sequence $x_{n} \rightarrow l$ then we must have

$$
l=l\left(3 N-l^{2}\right) / 2 N
$$

so that

$$
\begin{equation*}
l=0 \quad \text { or } \quad l= \pm N^{1 / 2} \tag{3}
\end{equation*}
$$

We have

$$
\begin{align*}
x_{n+1}-N^{1 / 2} & =\left[x_{n}\left(3 N-x_{n}^{2}\right)-2 N^{3 / 2}\right] / 2 N \\
& =-\left(x_{n}-N^{1 / 2}\right)^{2}\left(x_{n}+2 N^{1 / 2}\right) / 2 N \tag{4}
\end{align*}
$$

This shows that convergence will be quadratic. Moreover, if x_{n} is positive, $x_{n+1}-N^{1 / 2}$ is negative, i.e., $x_{n+1}<N^{1 / 2}$. Again

$$
\begin{equation*}
x_{n+1}-x_{n}=x_{n}\left(N-x_{n}^{2}\right) / 2 N, \tag{5}
\end{equation*}
$$

which is positive if $0<x_{n}<N^{1 / 2}$, negative if $x_{n}>N^{1 / 2}$. If $0<x_{0}<(3 N)^{1 / 2}$ then $x_{1}>0$ from (1) and from (4) we conclude that $x_{1}<N^{1 / 2}$. It follows from (5) that $x_{1}<x_{2}<\cdots$. Since we have already noted that $x_{n+1}<N^{1 / 2}$ it follows that $x_{n} \rightarrow N^{1 / 2}$.

These cases are illustrated in Fig. 1. If $x_{0}=A$, then $x_{1}=B, x_{2}=C$ while if $x_{0}=D$, then $x_{1}=B, x_{2}=C$.

Figure 1

$$
\text { 3. The Case when } \gamma=(5 N)^{1 / 2} \leqslant x_{0}
$$

From (1), if $x_{n}= \pm \gamma$, then $x_{n+1}=\mp \gamma$. Hence, when $x_{0}=\gamma$, we have $x_{n}=(-1)^{n} \gamma$ and the sequence oscillates finitely.

Take $x_{0}>\gamma$. Then from (1)

$$
\begin{equation*}
x_{1}+x_{0}=x_{0}\left(5 N-x_{0}^{2}\right) / 2 N<0 \tag{7}
\end{equation*}
$$

so that $x_{1}<-\gamma$. Also, since x_{1} is negative and $x_{1}{ }^{2}>5 N$,

$$
\begin{equation*}
x_{2}+x_{1}=x_{1}\left(5 N-x_{1}^{2}\right) 2 N>0 . \tag{8}
\end{equation*}
$$

Subtracting (7) from (8) we find

$$
\begin{equation*}
x_{2}-x_{0}>0 . \tag{9}
\end{equation*}
$$

Hence, the subsequence $\left\{x_{2 n}\right\}$ is increasing; similarly, the subsequence $\left\{x_{2 n-1}\right\}$ is decreasing. We shall show that neither can have a finite limit, and so the sequence oscillates infinitely.

From (1) we find

$$
\begin{equation*}
x_{n+2}=x_{n}\left(3 N-x_{n}^{2}\right)\left(12 N^{3}-x_{n}^{2}\left(3 N-x_{n}^{2}\right)^{2}\right) / 16 N^{4} \tag{10}
\end{equation*}
$$

If the subsequence $\left\{x_{2 n}\right\}$ has a finite limit l then we must have

$$
16 N^{4} l=l\left(3 N-l^{2}\right)\left(12 N^{3}-l^{2}\left(9 N^{2}-6 N l^{2}+l^{4}\right)\right)
$$

which gives

$$
l^{9}-9 N l^{7}+27 N^{2} l^{5}-39 N^{3} l^{3}+20 N^{4} l=0
$$

The same is true for the subsequence $\left\{x_{2 n-1}\right\}$.
This q quation has five real roots

$$
\begin{equation*}
l=0, \quad l= \pm N^{1 / 2}, \quad l= \pm(5 N)^{1 / 2} \tag{11}
\end{equation*}
$$

and four rom aplex ones which are the roots of

$$
l^{4}-3 N l^{2}+4 N^{2}=0
$$

Since, from (9), the absolute values of all the x_{n} exceed $x_{0}>\gamma$, none of the limits in (11) is possible. Hence, the sequence oscillates infinitely.

4. The Case when $(3 N)^{1 / 2}<x_{0}<(5 N)^{1 / 2}$

This is where the complications are. We shall show that there is an increasing sequence of numbers $\beta_{r}, r=-1,0,1, \ldots$ satisfying ($\left.3 N\right)^{1 / 2} \leqslant \beta_{r}<(5 N)^{1 / 2}$ and such that $\beta_{r} \rightarrow(5 N)^{1 / 2}$ which have the following properties:

$$
\begin{align*}
& \text { if } x_{0}=\beta_{r} \text { then } x_{n} \rightarrow 0 \text { and in fact } x_{r+2}=x_{r+3}=\cdots=0 . \tag{12}\\
& \text { if } \beta_{r}<x_{0}<\beta_{r+1} \text { then } x_{n} \rightarrow(-1)^{r} N^{1 / 2} . \tag{13}
\end{align*}
$$

We begin by discussing the equation

$$
\begin{equation*}
h(x) \equiv 3 x^{3}-3 x-2 \theta=0 \tag{14}
\end{equation*}
$$

which we can also write as

$$
\begin{equation*}
x\left(3 x^{2}-5\right)+2(x-\theta)=0 \tag{15}
\end{equation*}
$$

when $1 \leqslant \theta<(5 / 3)^{1 / 2} \doteqdot 1.2910$. The graph of $h(x)$ has the following form:

Figure 2

It is clear from the graph that for any such θ the equation (14) has exactly one real root $x(\theta)$ which satisfies $\theta<x(\theta)<(5 / 3)^{1 / 2}$.

We define a sequence $\alpha_{n}, n=-1,0,1, \ldots$, as follows: $\alpha_{-1}=1$ and for $n=-1,0,1,2, \ldots, \alpha_{n+1}$ is the unique real root of

$$
\begin{equation*}
3 x^{3}-3 x-2 \alpha_{n}=0 \tag{16}
\end{equation*}
$$

Clearly α_{n} is an increasing sequence bounded above by (5/3) ${ }^{1 / 2}$. Its limit l, therefore, satisfies

$$
3 l^{3}-3 l-2 l=0
$$

and is, therefore, $(5 / 3)^{1 / 2}$. Convergence is ultimately geometric with a common ratio of $1 / 6$ for we have

$$
\frac{\alpha_{n+1}-l}{\alpha_{n}-l}=\frac{2}{3\left[\alpha_{n+1}^{2}+\alpha_{n+1} l+l^{2}-1\right]} \approx \frac{1}{6} .
$$

We can find the early α 's by use of a computer, or from the tables of Salzer et al. [5]:

$$
\begin{gathered}
\alpha_{-1}=1, \quad \alpha_{0}=1.2600, \quad \alpha_{1}=1.2826, \quad \alpha_{2}=1.2896, \ldots \\
\lim \alpha_{n}=1.2910
\end{gathered}
$$

We now define

$$
\beta_{n}=\alpha_{n}(3 N)^{1 / 2}, \quad n=-1,0,1, \ldots
$$

This means that Eq. (16), which defines α_{n+1},

$$
\begin{equation*}
3 \alpha_{n+1}^{3}-3 \alpha_{n+1}-2 \alpha_{n}=0 \tag{17}
\end{equation*}
$$

can be rewritten as

$$
\begin{equation*}
\beta_{n+1}^{3}-3 \beta_{n+1} N=2 N \beta_{n} \tag{18}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\beta_{n}=-f\left(\beta_{n+1}\right) \tag{19}
\end{equation*}
$$

We shall establish the results (12) and (13) for $r=-1,0,1, \ldots$ by induction; however, reference to the diagrams will be helpful. For instance, if $\beta_{0}<x_{0}=E<\beta_{1}$, then $-\beta_{0}<x_{1}=f\left(x_{0}\right)=F<-\beta_{1}$ and $0<x_{2}=$ $f\left(x_{1}\right)=G<\beta_{-1}$.
(a) If $x_{0}=\beta_{-1}=(3 N)^{1 / 2}$, then, as already noted in Section 2, we have $x_{1}=x_{2}=\cdots=0$. Assume that (12) holds. Take $x_{0}=\beta_{r+1}$. Then $x_{1}=f\left(x_{0}\right)=f\left(\beta_{r+1}\right)=-\beta_{r}$ by (19). The induction hypothesis applies and gives $x_{r+3}=x_{r+4}=\cdots=0$.
(b) If $\beta_{-1}<x_{0}<\beta_{0}$, then $0>x_{1}>f\left(\beta_{0}\right)=-\beta_{-1}$. Hence, since $f(x)$ is odd, we have from Section 2 that $x_{n} \rightarrow-N^{1 / 2}$. Now assume (13) holds. Take x_{0} such that $\beta_{r+1}<x_{0}<\beta_{r+2}$. Then

$$
f\left(\beta_{r+2}\right)<x_{1}=f\left(x_{0}\right)<f\left(\beta_{r+1}\right)
$$

i.e., by (19),

$$
-\beta_{r+1}<x_{1}<-\beta_{r} \quad \text { or } \quad \beta_{r}<-x_{1}<\beta_{r+1}
$$

The induction hypothesis applied to x_{1} gives the limit $(-1)^{r} N^{1 / 2}$ and the fact that f is odd shows that for $-x_{1}$ the limit is

$$
(-1) \times(-1)^{r} N^{1 / 2}=(-1)^{r+1} N^{1 / 2}
$$

as required.

5. Another Recurrence Relation

The behavior of the recurrence relation

$$
\begin{equation*}
y_{n+1}=2 y_{n}^{3} /\left[3 y_{n}^{2}-N\right], \tag{20}
\end{equation*}
$$

which also converges quadratically to $N^{1 / 2}$ can be discussed similarly, or it can be read off from our results by observing that putting $x_{n}=N / y_{n}$ in (1) gives (20).

6. The Origin of the Relations

All three relations are obtainable from Newton's formula,

$$
x_{n+1}=x_{n}-\left[f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)\right],
$$

for suitable f. Specifically:

$$
\begin{array}{lll}
f(x)=1-N x^{-2} & \text { gives } & (1) \\
f(x)=N-x^{2} & \text { gives } & (2) \\
f(x)=x^{3}-N x & \text { gives } & (20) .
\end{array}
$$

7. Optimal Starting Approximations

There has recently been considerable activity in the discussion of optimal starting values for square root algorithms. In the present context this means determining a polynomial $S(N)$ of assigned degree such that if we take $x_{0}=S(N)$ then the algorithm for $N^{1 / 2}$ is optimal in an appropriate sense. In particular Wilson [7] discusses this problem for the algorithm

$$
w_{n+1}=w_{n}\left(3 / 2-(N / 2) w_{n}^{2}\right),
$$

which converges to $N^{-1 / 2}$, from which $N^{1 / 2}$ can be obtained with one multiplication. Wilson notes that the optimal polynomials for (1) are got by reversing those he obtained for $\left(1^{\prime}\right)$. Wilson does not discuss the regions of convergence.

References

1. N. G. De Bruidn, "Asymptotic Methods in Analysis," North-Holland, Amsterdam, 1958.
2. T. W. Chaundy and Eric Phillips, The convergence of sequences defined by quadratic recurrence-formulae, Quart. J. Math. Oxford Ser. 7 (1936), 74-80.
3. N. Metropolis, M. L. Stein, and P. R. Stein, Stable states of a non-linear transformation, Numer. Math. 10 (1967), 1-19.
4. P. Montel, "Leçons sur les récurrences et leurs applications," Gauthier-Villars, Paris, 1957.
5. H. E. Salzer, C. H. Richards, and I. Arsham, "Tables for the Solution of Cubic Equations," McGraw-Hill, New York, 1958.
6. P. R. Stein and S. M. Ulam, Non-linear transformation studies on electronic computers, Dissertationes Math. = Rozprawy Mat. 39 (1964), 1-65.
7. M. W. WILson, Optimal starting approximations for generating square root for slow or no divide, Comm. ACM 13 (1970), 559-560.

[^0]: * The preparation of this paper was supported in part by the National Science Foundation. We are grateful to Dr. Oved Shisha for his comments on a preliminary version of this paper.

